Software Development
Task Sharing Mobile and Web Application
Introduction
Learn how we built a scalable task sharing platform using Flutter, Nest.js, Neo4j, and AI for real-time updates, task prioritization, and seamless collaboration.
In today’s fast-paced world of digital collaboration, developing a scalable and efficient task sharing platform requires selecting the right technologies. This case study outlines our approach to building a cross-platform mobile and web application using Flutter for the frontend and Nest.js for the backend. The goal was to create a seamless user experience while ensuring scalability, performance, and ease of development. We also integrated cutting-edge technologies like AI and graph databases to enhance the platform’s functionality.
Project Overview
This project focused on both web and mobile task sharing app development, with AI integration and UX optimization. We used Flutter, Nest.js, and Neo4j as the core technologies for the project. The development period spanned from February 2022 to November 2022, and we aimed to design a solution that was SME-friendly and capable of growing with future demands.
Aspect | Details |
Services | Web and mobile app development, AI integration and UX optimisation. |
Technology | Flutter, Nest.js, Neo 4j |
Period | February 2022 – November 2022. |
Budget | Designed to be SME-friendly with scalable options for future growth. |
Why Flutter?
Flutter was selected as the frontend framework for its ability to deliver a consistent experience across both iOS and Android platforms. By using a single codebase, we minimized development time while ensuring that the task sharing app performed well on both platforms. One of the main challenges we faced was designing dynamic task sharing cards that updated in real-time based on user interactions. Flutter’s widget-based architecture allowed us to create reusable components such as the “Task Status Card,” which visually indicated progress with animations and color-coded statuses.
To manage the app’s complex UI states, we used the Provider package. This was especially useful for screens like the “Task Prioritization” view, where data fetched from the backend needed to dynamically update the UI. We utilized a combination of ChangeNotifier and asynchronous streams for efficient state management.
Performance optimization was also a priority. Initially, the app struggled with rendering large lists of tasks, which caused jank issues. We resolved this by implementing the ListView.builder widget, along with lazy loading, which ensured smooth scrolling even when handling datasets with over 10,000 tasks.
Why Nest.js?
For the backend, we chose Nest.js because of its modular architecture, TypeScript support, and seamless compatibility with GraphQL and REST APIs. Nest.js empowered us to build a scalable and maintainable backend that could support real-time updates and complex business logic. The backend was structured into distinct modules such as User Management, Task Management, Notifications, and AI Integration, making the codebase more maintainable and allowing new developers to onboard quickly.
One of the key features of the backend was the use of GraphQL. Rather than relying on traditional REST APIs, we implemented a GraphQL layer to optimize data fetching. This was particularly beneficial for screens like the “Dashboard Overview,” where tasks needed to be grouped by various attributes such as status, team members, and deadlines. With GraphQL, we could request only the relevant fields in a single query, reducing the size of payloads and improving response times by 30%.
We also implemented real-time features using WebSockets. For example, when a user updated a task’s priority, the change was immediately reflected across all connected devices, promoting collaboration for teams distributed across different locations.
Neo4j Integration with Nest.js
To manage the complex relationships between users, tasks, and teams, we integrated Neo4j, a graph database, into the Nest.js backend. Neo4j was particularly suited for handling use cases like “Find Related Tasks” or “Suggest Collaborators.” For instance, when a new task was created, the system could suggest potential collaborators based on their past interactions and areas of expertise.
Initially, querying large datasets in Neo4j led to performance bottlenecks. To overcome this, we optimized our database by indexing frequently queried relationships and utilizing parameterized Cypher queries. These adjustments helped reduce query execution times by 50%. To provide better visibility into task dependencies, we developed a graph visualization tool using D3.js. This tool fetched data from Neo4j and displayed it in interactive node-link diagrams, allowing administrators to quickly identify bottlenecks or overloaded team members.
AI-Powered Features
We also integrated AI-powered features into the platform using OpenAI APIs. One notable feature was task prioritization, which leveraged GPT-4 for natural language processing (NLP). Users could describe tasks in plain English, and the system would analyze the input, assign priorities, and suggest deadlines based on the task’s context.
For more complex tasks, the AI would suggest subtasks based on historical data and predefined templates. For instance, when creating a “Marketing Campaign,” the system would automatically generate subtasks like “Design Graphics,” “Write Copy,” and “Schedule Posts.”
Additionally, we implemented multilingual support by using OpenAI’s translation APIs. This allowed teams to communicate more effectively by translating task descriptions and comments in real-time, significantly improving collaboration among teams spread across different regions.
Challenges and Solutions
Ensuring cross-platform consistency was one of our major challenges. We wanted the UI to look and behave the same on both iOS and Android. To address this, we relied on Flutter’s “Hot Reload” feature to rapidly iterate on designs and utilized the MediaQuery API to ensure that our designs were responsive across different screen sizes.
Scalability was another concern, especially with the goal of supporting 50,000 active users in the first six months. We deployed the backend on AWS with auto-scaling groups and a load balancer, which ensured that the platform could handle spikes in traffic. Additionally, we optimized database performance by caching frequently accessed data using Redis.
Managing real-time updates without overloading the server presented a challenge as well. We used WebSocket connections with room-based subscriptions to ensure that only relevant users received real-time updates, minimizing server strain.
Outcomes and Lessons Learned
The task sharing platform achieved notable success, with a 40% increase in task completion rates. This improvement was largely attributed to the AI-driven prioritization and the intuitive user interface.
In terms of development efficiency, the combination of Flutter and Nest.js reduced the estimated development time by 35%, enabling us to deliver the product in just six months. The modular architecture of Nest.js, combined with Neo4j’s flexibility, ensured that the platform was scalable and could handle the growing user base.
Key Takeaways
Flutter’s widget-based architecture proves to be a game-changer for cross-platform development, but attention to performance optimization is essential to avoid UI jank. Nest.js, with its modular design and GraphQL support, is an excellent choice for building modern, scalable backend systems. The combination of AI and graph databases opened up opportunities to create innovative features that significantly enhance user productivity and collaboration.
Conclusion
Our journey with Flutter and Nest.js showcased the power of modern technologies in delivering high-quality, scalable applications. By tackling challenges creatively and integrating advanced technologies like AI and Neo4j, we built a task sharing platform that stands out in the competitive market. These insights will certainly influence our approach to future projects.
Looking to build a scalable, AI-driven task-sharing platform or an innovative digital solution? Our expert team can help. Contact us today to discuss your project and bring your vision to life!
WRITTEN BY
February 7, 2025, Product Development Team
Top Categories
- Software Development ................... 6
- AI in Business ................... 5
- Technology ................... 3
- Product Development & AI ................... 3
- Digital Marketing ................... 3